The Role of Metal Oxide Layers in the Sensitivity of Lactate Biosensors Subjected to Oxygen-Limited Conditions
نویسندگان
چکیده
Amperometric lactate biosensors are used to detect lactate concentration in blood and tissues, which is integral in identifying cyanide poisoning, septic shock, and athletic condition. The construction of lactate biosensors with high sensitivity, selectivity, and stability is imperative to diagnose and determine these medical conditions. Lactate detection is currently limited to oxygen-rich environments due to the fact that oxygen is a limiting factor in the lactate reaction. To circumvent this problem, researchers have developed mediators or alternate, oxygenfree enzymes to improve sensitivity. In our study, ceria (CeO2) with high oxygen storage capacity (OSC) was introduced to the enzyme layer to eliminate the effects of oxygen depletion. Fluctuation in oxygen concentration was combatted by use of ceria metal oxide nanopowders, which absorb and release oxygen under oxygen rich and lean conditions respectively. These nanopowders were deposited on the electrode surface in a polyelectrolyte solution. The lactate biosensors were then constructed using layer-by-layer assembly to take advantage of electrostatic interaction between the positively charged polyelectrolyte and negatively charged lactate oxidase (LOx). Polyethylenimine (PEI), a positively charged polymer, was used to immobilize the enzymes on the Pt surface via alternating electrostatic adsorption. It was observed that the introduction of ceria in the enzyme layer reduced oxygen dependency. The results showed that lactate biosensors with high selectivity, sensitivity, and wide detection limit were constructed. KEYWORDSLactate biosensor, biosensor, oxygen storage capacity, ceria biosensor, amperometric biosensor REFERENCESLei, Yang; Luo, Ning. A highly sensitive electrochemical biosensor based on zinc oxide nanotetrapodsfor L-lactic acid detection. Nanoscale, 2012, 4, 3438-3443.Njagi, John; Ispas, Cristina; Andreescu, Silvana. Mixed ceria-based metal oxides biosensor for operation inoxygen restrictive environments. Analytical Chemistry, 2008,90,19,7266-7274.Rodriguez, Marcela; Rivas, Gustavo. Assembly of glucose oxidase and different polyelectrodes by means ofelectrostatic layer-by-layer adsorption on thiolated gold surface. Electroanalysis, 2004,16,20,1717-1722.
منابع مشابه
Fabrication of Resistive E. coli Biosensor Based on ZnO Nanorods and Nanoparticles
In this paper, a biosensor has been fabricated using ZnO nanorods and nanoparticles to detect different concentrations of the E. coli bacteria. The innovation of this paper lies in design and fabrication of the resistive type E Coli bacteria sensor. To make this biosensors, printed circuit board based electrodes are designed and made in an interdigitated shape. Both hydrothermal and drop cast m...
متن کاملROLE OF Mn(TPP)Cl IN THE EPOXIDATION WITH SINGLET OXYGEN
Mn(TPP)Cl catalyzes cooxidation of olefin in the singlet oxygenation of sulfid. Mn(TPP)Cl is able to transfer an oxygen atom from a peroxidic intermediate generated in singlet oxygenation of sulfide to a metal ion affording metal 0x0 species which is responsible for epoxidation. This system leads to allcenes epoxidation such as styrene and cyclooctene. Epoxidation of cyclohexene produces cy...
متن کاملApplication of Graphene and Graphene Oxide for modification of electrochemical sensors and biosensors: A review
This paper gives a comprehensive review about the most recent progress in graphene and graphene oxide based electrochemical sensors and biosensors. Graphene, emerging as a true 2-dimensional material, has received increasing attention due to its unique physicochemical properties (high surface area, excellent conductivity, high mechanical strength, and ease of functionalization and mass product...
متن کاملبررسی روند تشکیل ترکیبات اکسیدی در آثار برنزی با استناد به مطالعات میکروسکوپی
Due to the complex corrosion mechanism of the bronze objects, explaining the structure of different layers of corrosion in these objects at microscopic levels is possible. Typically copper oxide(I) is the first corrosion layer on surface of bronze objects that are excavated of historical sites. However, depending on the environmental conditions، various forms of corrosion layer of tin or copper...
متن کاملApplication of Graphene and Graphene Oxide for modification of electrochemical sensors and biosensors: A review
This paper gives a comprehensive review about the most recent progress in graphene and graphene oxide based electrochemical sensors and biosensors. Graphene, emerging as a true 2-dimensional material, has received increasing attention due to its unique physicochemical properties (high surface area, excellent conductivity, high mechanical strength, and ease of functionalization and mass product...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014